Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
Hum Genet ; 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642129

Copper is a vital micronutrient involved in many biological processes and is an essential component of tumour cell growth and migration. Copper influences tumour growth through a process called cuproplasia, defined as abnormal copper-dependent cell-growth and proliferation. Copper-chelation therapy targeting this process has demonstrated efficacy in several clinical trials against cancer. While the molecular pathways associated with cuproplasia are partially known, genetic heterogeneity across different cancer types has limited the understanding of how cuproplasia impacts patient survival. Utilising RNA-sequencing data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) datasets, we generated gene regulatory networks to identify the critical cuproplasia-related genes across 23 different cancer types. From this, we identified a novel 8-gene cuproplasia-related gene signature associated with pan-cancer survival, and a 6-gene prognostic risk score model in low grade glioma. These findings highlight the use of gene regulatory networks to identify cuproplasia-related gene signatures that could be used to generate risk score models. This can potentially identify patients who could benefit from copper-chelation therapy and identifies novel targeted therapeutic strategies.

2.
Int J Pharm X ; 7: 100235, 2024 Jun.
Article En | MEDLINE | ID: mdl-38486882

In this study, we developed self-assembling nanoparticles (LCPs) able to trigger the release of Chlorambucil (Chl) and Doxorubicin (DOX) to MDA-MB-231 cells by exploiting the enzyme and redox signals. The DOX loaded LCPs was prepared by the self-assembly of two chondroitin sulphate (CS) derivatives, obtained by the covalent conjugation of Lipoic Acid (LA) and Chlorambucil (Chl) to the CS backbone. After the physic-chemical characterization of the conjugates by FT-IR, 1H NMR, and determination of the critical aggregation concentration, spherical nanoparticles with mean hydrodynamic diameter of 45 nm (P.D.I. 0.24) and Z-potential of - 44 mV were obtained by water addition/solvent evaporation method. In vitro experiments for the release of Chl and DOX were performed in healthy and cancer cells, using a cell culture media to maintain the physiological intracellular conditions (pH 7.4) (and concentration of esterase and GSH. The results allowed the selective release of the payloads to be detected: Chl release of 0 and 41% were obtained after 2 h incubation in normal and in cancer cells respectively, while values of 35 (in healthy cells) and 60% (in cancer cells) were recorded for DOX release after 96 h. Finally, viability studies proved the ability of the newly proposed nanosystem to enhance the cytotoxic activity of the two drugs against cancer cells.

3.
RSC Adv ; 13(48): 34045-34056, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-38020008

The key properties and high versatility of metal nanoparticles have shed new perspectives on cancer therapy, with copper nanoparticles gaining great interest because of the ability to couple the intrinsic properties of metal nanoparticles with the biological activities of copper ions in cancer cells. Copper, indeed, is a cofactor involved in different metabolic pathways of many physiological and pathological processes. Literature data report on the use of copper in preclinical protocols for cancer treatment based on chemo-, photothermal-, or copper chelating-therapies. Copper nanoparticles exhibit anticancer activity via multiple routes, mainly involving the targeting of mitochondria, the modulation of oxidative stress, the induction of apoptosis and autophagy, and the modulation of immune response. Moreover, compared to other metal nanoparticles (e.g. gold, silver, palladium, and platinum), copper nanoparticles are rapidly cleared from organs with low systemic toxicity and benefit from the copper's low cost and wide availability. Within this review, we aim to explore the impact of copper in cancer research, focusing on glioma, the most common primary brain tumour. Glioma accounts for about 80% of all malignant brain tumours and shows a poor prognosis with the five-year survival rate being less than 5%. After introducing the glioma pathogenesis and the limitation of current therapeutic strategies, we will discuss the potential impact of copper therapy and present the key results of the most relevant literature to establish a reliable foundation for future development of copper-based approaches.

4.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37480151

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

5.
Cell Rep ; 42(6): 112616, 2023 06 27.
Article En | MEDLINE | ID: mdl-37289585

Combined inhibition of oxidative phosphorylation (OXPHOS) and glycolysis has been shown to activate a PP2A-dependent signaling pathway, leading to tumor cell death. Here, we analyze highly selective mitochondrial complex I or III inhibitors in vitro and in vivo to elucidate the molecular mechanisms leading to cell death following OXPHOS inhibition. We show that IACS-010759 treatment (complex I inhibitor) induces a reactive oxygen species (ROS)-dependent dissociation of CIP2A from PP2A, leading to its destabilization and degradation through chaperone-mediated autophagy. Mitochondrial complex III inhibition has analogous effects. We establish that activation of the PP2A holoenzyme containing B56δ regulatory subunit selectively mediates tumor cell death, while the arrest in proliferation that is observed upon IACS-010759 treatment does not depend on the PP2A-B56δ complex. These studies provide a molecular characterization of the events subsequent to the alteration of critical bioenergetic pathways and help to refine clinical studies aimed to exploit metabolic vulnerabilities of tumor cells.


Chaperone-Mediated Autophagy , Electron Transport Complex I , Neoplasms , Humans , Autoantigens/metabolism , Cell Line, Tumor , Energy Metabolism , Neoplasms/pathology , Oxidative Phosphorylation , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/metabolism , Signal Transduction , Electron Transport Complex I/antagonists & inhibitors
6.
Front Mol Biosci ; 10: 1148501, 2023.
Article En | MEDLINE | ID: mdl-37325471

Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 µA/cm2) and not enhanced with ETI (5.73 ± 0.48 µA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.

7.
Genome Med ; 15(1): 20, 2023 04 03.
Article En | MEDLINE | ID: mdl-37013636

BACKGROUND: Molecular profiling of the tumour immune microenvironment (TIME) has enabled the rational choice of immunotherapies in some adult cancers. In contrast, the TIME of paediatric cancers is relatively unexplored. We speculated that a more refined appreciation of the TIME in childhood cancers, rather than a reliance on commonly used biomarkers such as tumour mutation burden (TMB), neoantigen load and PD-L1 expression, is an essential prerequisite for improved immunotherapies in childhood solid cancers. METHODS: We combined immunohistochemistry (IHC) with RNA sequencing and whole-genome sequencing across a diverse spectrum of high-risk paediatric cancers to develop an alternative, expression-based signature associated with CD8+ T-cell infiltration of the TIME. Furthermore, we explored transcriptional features of immune archetypes and T-cell receptor sequencing diversity, assessed the relationship between CD8+ and CD4+ abundance by IHC and deconvolution predictions and assessed the common adult biomarkers such as neoantigen load and TMB. RESULTS: A novel 15-gene immune signature, Immune Paediatric Signature Score (IPASS), was identified. Using this signature, we estimate up to 31% of high-risk cancers harbour infiltrating T-cells. In addition, we showed that PD-L1 protein expression is poorly correlated with PD-L1 RNA expression and TMB and neoantigen load are not predictive of T-cell infiltration in paediatrics. Furthermore, deconvolution algorithms are only weakly correlated with IHC measurements of T-cells. CONCLUSIONS: Our data provides new insights into the variable immune-suppressive mechanisms dampening responses in paediatric solid cancers. Effective immune-based interventions in high-risk paediatric cancer will require individualised analysis of the TIME.


B7-H1 Antigen , Neoplasms , Adult , Humans , Child , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Neoplasms/genetics , CD8-Positive T-Lymphocytes/metabolism , Biomarkers, Tumor/genetics , Tumor Microenvironment/genetics , Mutation
8.
Antibiotics (Basel) ; 12(3)2023 Mar 15.
Article En | MEDLINE | ID: mdl-36978452

There is a pressing need to develop new antimicrobials to help combat the increase in antibiotic resistance that is occurring worldwide. In the current research, short amphiphilic antibacterial and antibiofilm agents were produced by tuning the hydrophobic and cationic groups of anthranilamide peptidomimetics. The attachment of a lysine cationic group at the tail position increased activity against E. coli by >16-fold (from >125 µM to 15.6 µM) and greatly reduced cytotoxicity against mammalian cells (from ≤20 µM to ≥150 µM). These compounds showed significant disruption of preformed biofilms of S. aureus at micromolar concentrations.

9.
J Immunother Cancer ; 10(9)2022 09.
Article En | MEDLINE | ID: mdl-36167468

BACKGROUND: Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited. METHODS: We profiled an extensive biobank of patients' biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control. RESULTS: Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors. CONCLUSIONS: Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.


Brain Neoplasms , Glioblastoma , Glioma , Receptors, Chimeric Antigen , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Gangliosides/metabolism , Glioblastoma/genetics , Glioblastoma/therapy , Glioma/metabolism , Humans , Immune Checkpoint Inhibitors , Interleukin-15/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Xenograft Model Antitumor Assays
10.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Article En | MEDLINE | ID: mdl-36014715

Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.

11.
Materials (Basel) ; 15(5)2022 Feb 22.
Article En | MEDLINE | ID: mdl-35268879

With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100-170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.

12.
Cancers (Basel) ; 13(21)2021 Oct 26.
Article En | MEDLINE | ID: mdl-34771529

BACKGROUND: Identification of prognostic biomarkers in cancers is a crucial step to improve overall survival (OS). Although mutations in tumour protein 53 (TP53) is prevalent in astrocytoma, the prognostic effects of TP53 mutation are unclear. METHODS: In this retrospective study, we sequenced TP53 exons 1 to 10 in a cohort of 102 lower-grade glioma (LGG) subtypes and determined the prognostic effects of TP53 mutation in astrocytoma and oligodendroglioma. Publicly available datasets were analysed to confirm the findings. RESULTS: In astrocytoma, mutations in TP53 codon 273 were associated with a significantly increased OS compared to the TP53 wild-type (HR (95% CI): 0.169 (0.036-0.766), p = 0.021). Public datasets confirmed these findings. TP53 codon 273 mutant astrocytomas were significantly more chemosensitive than TP53 wild-type astrocytomas (HR (95% CI): 0.344 (0.13-0.88), p = 0.0148). Post-chemotherapy, a significant correlation between TP53 and YAP1 mRNA was found (p = 0.01). In O (6)-methylguanine methyltransferase (MGMT) unmethylated chemotherapy-treated astrocytoma, both TP53 codon 273 and YAP1 mRNA were significant prognostic markers. In oligodendroglioma, TP53 mutations were associated with significantly decreased OS. CONCLUSIONS: Based on these findings, we propose that certain TP53 mutant astrocytomas are chemosensitive through the involvement of YAP1, and we outline a potential mechanism. Thus, TP53 mutations may be key drivers of astrocytoma therapeutic efficacy and influence survival outcomes.

13.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article En | MEDLINE | ID: mdl-34209825

Functional nanocarriers which are able to simultaneously vectorize drugs to the site of interest and exert their own cytotoxic activity represent a significant breakthrough in the search for effective anticancer strategies with fewer side effects than conventional chemotherapeutics. Here, we propose previously developed, self-assembling dextran-curcumin nanoparticles for the treatment of prostate cancer in combination therapy with Doxorubicin (DOXO). Biological effectiveness was investigated by evaluating the cell viability in either cancer and normal cells, reactive oxygen species (ROS) production, apoptotic effect, interference with the cell cycle, and the ability to inhibit cell migration and reverse the epithelial to mesenchymal transition (EMT). The results proved a significant enhancement of curcumin efficiency upon immobilization in nanoparticles: IC50 reduced by a half, induction of apoptotic effect, and improved ROS production (from 67 to 134%) at low concentrations. Nanoparticles guaranteed a pH-dependent DOXO release, with a more efficient release in acidic environments. Finally, a synergistic effect between nanoparticles and Doxorubicin was demonstrated, with the free curcumin showing additive activity. Although in vivo studies are required to support the findings of this study, these preliminary in vitro data can be considered a proof of principle for the design of an effective therapy for prostate cancer treatment.


Curcumin/pharmacology , Dextrans/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Prostatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Curcumin/administration & dosage , Dextrans/administration & dosage , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Drug Delivery Systems , Humans , Male , Nanoparticles , PC-3 Cells
14.
ChemMedChem ; 16(15): 2315-2329, 2021 08 05.
Article En | MEDLINE | ID: mdl-33890721

Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.


Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , Humans , Neoplasms/metabolism , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism
15.
Cell Rep ; 35(2): 108994, 2021 04 13.
Article En | MEDLINE | ID: mdl-33852836

Diffuse intrinsic pontine glioma (DIPG) is an aggressive and incurable childhood brain tumor for which new treatments are needed. CBL0137 is an anti-cancer compound developed from quinacrine that targets facilitates chromatin transcription (FACT), a chromatin remodeling complex involved in transcription, replication, and DNA repair. We show that CBL0137 displays profound cytotoxic activity against a panel of patient-derived DIPG cultures by restoring tumor suppressor TP53 and Rb activity. Moreover, in an orthotopic model of DIPG, treatment with CBL0137 significantly extends animal survival. The FACT subunit SPT16 is found to directly interact with H3.3K27M, and treatment with CBL0137 restores both histone H3 acetylation and trimethylation. Combined treatment of CBL0137 with the histone deacetylase inhibitor panobinostat leads to inhibition of the Rb/E2F1 pathway and induction of apoptosis. The combination of CBL0137 and panobinostat significantly prolongs the survival of mice bearing DIPG orthografts, suggesting a potential treatment strategy for DIPG.


Antineoplastic Agents/pharmacology , Brain Stem Neoplasms/drug therapy , DNA-Binding Proteins/genetics , Diffuse Intrinsic Pontine Glioma/drug therapy , Epigenesis, Genetic , High Mobility Group Proteins/genetics , Histones/genetics , Neuroglia/drug effects , Transcriptional Elongation Factors/genetics , Acetylation , Animals , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/mortality , Brain Stem Neoplasms/pathology , Carbazoles/pharmacology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Child , Chromatin/chemistry , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Diffuse Intrinsic Pontine Glioma/genetics , Diffuse Intrinsic Pontine Glioma/mortality , Diffuse Intrinsic Pontine Glioma/pathology , Drug Synergism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Epigenome , High Mobility Group Proteins/metabolism , Histones/antagonists & inhibitors , Histones/metabolism , Humans , Methylation , Mice , Neuroglia/metabolism , Neuroglia/pathology , Panobinostat/pharmacology , Primary Cell Culture , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Signal Transduction , Survival Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Elongation Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
16.
Molecules ; 26(5)2021 Mar 03.
Article En | MEDLINE | ID: mdl-33802608

In this work, we combined electrically-conductive graphene oxide and a sodium alginate-caffeic acid conjugate, acting as a functional element, in an acrylate hydrogel network to obtain multifunctional materials designed to perform multiple tasks in biomedical research. The hybrid material was found to be well tolerated by human fibroblast lung cells (MRC-5) (viability higher than 94%) and able to modify its swelling properties upon application of an external electric field. Release experiments performed using lysozyme as the model drug, showed a pH and electro-responsive behavior, with higher release amounts and rated in physiological vs. acidic pH. Finally, the retainment of the antioxidant properties of caffeic acid upon conjugation and polymerization processes (Trolox equivalent antioxidant capacity values of 1.77 and 1.48, respectively) was used to quench the effect of hydrogen peroxide in a hydrogel-assisted lysozyme crystallization procedure.


Alginates/chemistry , Antioxidants/pharmacology , Caffeic Acids/pharmacology , Cytotoxins/pharmacology , Graphite/chemistry , Hydrogels/chemistry , Oxidative Stress/drug effects , Antioxidants/chemistry , Caffeic Acids/chemistry , Cells, Cultured , Cytotoxins/chemistry , Drug Liberation , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Lung/drug effects , Lung/pathology , Polymerization
17.
Cancers (Basel) ; 13(6)2021 Mar 13.
Article En | MEDLINE | ID: mdl-33805713

Diffuse Intrinsic Pontine Gliomas (DIPGs) are highly aggressive paediatric brain tumours. Currently, irradiation is the only standard treatment, but is palliative in nature and most patients die within 12 months of diagnosis. Novel therapeutic approaches are urgently needed for the treatment of this devastating disease. We have developed non-persistent gold nano-architectures (NAs) functionalised with human serum albumin (HSA) for the delivery of doxorubicin. Doxorubicin has been previously reported to be cytotoxic in DIPG cells. In this study, we have preclinically evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoarchitectures (NAs-HSA-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and doxorubicin-loaded NAs. Colony formation assays demonstrated greater potency of NAs-HSA-Dox on colony formation compared to doxorubicin. Western blot analysis indicated increased apoptotic markers cleaved Parp, cleaved caspase 3 and phosphorylated H2AX in NAs-HSA-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of NAs-HSA-Dox into DIPG neurospheres compared to doxorubicin alone. Despite the potency of the NAs in vitro, treatment of an orthotopic model of DIPG showed no antitumour effect. This disparate outcome may be due to the integrity of the blood-brain barrier and highlights the need to develop therapies to enhance penetration of drugs into DIPG.

18.
Pharmaceutics ; 12(12)2020 Dec 06.
Article En | MEDLINE | ID: mdl-33291284

Targeted drug delivery systems represent valuable tools to enhance the accumulation of therapeutics in the brain. Here, the presence of the blood brain barrier strongly hinders the passage of foreign substances, often limiting the effectiveness of pharmacological therapies. Among the plethora of materials used for the development of these systems, natural polysaccharides are attracting growing interest because of their biocompatibility, muco-adhesion, and chemical versatility which allow a wide range of carriers with tailored physico-chemical features to be synthetized. This review describes the state of the art in the field of targeted carriers based on natural polysaccharides over the last five years, focusing on the main targeting strategies, namely passive and active transport, stimuli-responsive materials and the administration route. In addition, in the last section, the efficacy of the reviewed carriers in each specific brain diseases is summarized and commented on in terms of enhancement of either blood brain barrier (BBB) permeation ability or drug bioavailability in the brain.

19.
Cancer Res ; 80(19): 4129-4144, 2020 10 01.
Article En | MEDLINE | ID: mdl-32816860

Therapeutic checkpoint antibodies blocking programmed death receptor 1/programmed death ligand 1 (PD-L1) signaling have radically improved clinical outcomes in cancer. However, the regulation of PD-L1 expression on tumor cells is still poorly understood. Here we show that intratumoral copper levels influence PD-L1 expression in cancer cells. Deep analysis of the The Cancer Genome Atlas database and tissue microarrays showed strong correlation between the major copper influx transporter copper transporter 1 (CTR-1) and PD-L1 expression across many cancers but not in corresponding normal tissues. Copper supplementation enhanced PD-L1 expression at mRNA and protein levels in cancer cells and RNA sequencing revealed that copper regulates key signaling pathways mediating PD-L1-driven cancer immune evasion. Conversely, copper chelators inhibited phosphorylation of STAT3 and EGFR and promoted ubiquitin-mediated degradation of PD-L1. Copper-chelating drugs also significantly increased the number of tumor-infiltrating CD8+ T and natural killer cells, slowed tumor growth, and improved mouse survival. Overall, this study reveals an important role for copper in regulating PD-L1 and suggests that anticancer immunotherapy might be enhanced by pharmacologically reducing intratumor copper levels. SIGNIFICANCE: These findings characterize the role of copper in modulating PD-L1 expression and contributing to cancer immune evasion, highlighting the potential for repurposing copper chelators as enhancers of antitumor immunity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/19/4129/F1.large.jpg.


B7-H1 Antigen/metabolism , Brain Neoplasms/immunology , Copper/metabolism , Neuroblastoma/immunology , Tumor Escape/physiology , Animals , B7-H1 Antigen/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Chelating Agents/pharmacology , Copper Transporter 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunotherapy/methods , Killer Cells, Natural , Lymphocytes, Tumor-Infiltrating/pathology , Mice, Inbred BALB C , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Triethylenephosphoramide/pharmacology , Tumor Escape/drug effects , Xenograft Model Antitumor Assays
20.
Theranostics ; 10(14): 6411-6429, 2020.
Article En | MEDLINE | ID: mdl-32483461

Targeting glutamine metabolism has emerged as a potential therapeutic strategy for Myc overexpressing cancer cells. Myc proteins contribute to an aggressive neuroblastoma phenotype. Radiotherapy is one of the treatment modalities for high-risk neuroblastoma patients. Herein, we investigated the effect of glutamine deprivation in combination with irradiation in neuroblastoma cells representative of high-risk disease and studied the role of Myc member interplay in regulating neuroblastoma cell radioresistance. Methods: Cell proliferation and viability assays were used to establish the effect of glutamine deprivation in neuroblastoma cells expressing c-Myc or MycN. Gene silencing and overexpression were used to modulate the expression of Myc genes to determine their role in neuroblastoma radioresistance. qPCR and western blot investigated interplay between expression of Myc members. The impact of glutamine deprivation on cell response following irradiation was explored using a radiobiological 3D colony assay. DNA repair gene pathways as well as CSC-related genes were studied by qPCR array. Reactive Oxygen Species (ROS) and glutathione (GSH) levels were detected by fluorescence and luminescence probes respectively. Cancer-stem cell (CSC) properties were investigated by sphere-forming assay and flow cytometry to quantify CSC markers. Expression of DNA repair genes and CSC-related genes was analysed by mining publicly available patient datasets. Results: Our results showed that glutamine deprivation decreased neuroblastoma cell proliferation and viability and modulated Myc member expression. We then demonstrated for the first time that combined glutamine deprivation with irradiation led to a selective radioresistance of MYCN-amplified neuroblastoma cells. By exploring the underlying mechanism of neuroblastoma radioresistance properties, our results highlight interplay between c-Myc and MycN expression suggesting compensatory mechanisms in Myc proteins leading to radioresistance in MYCN-amplified cells. This result was associated with the ability of MYCN-amplified cells to dysregulate the DNA repair gene pathway, maintain GSH and ROS levels and to increase the CSC-like population and properties. Conversely, glutamine deprivation led to radiosensitization in non-MYCN amplified cell lines through a disruption of the cell redox balance and a trend to decrease in the CSC-like populations. Mining publicly available gene expression dataset obtained from pediatric neuroblastoma patients, we identified a correlation pattern between Myc members and CSC-related genes as well as a specific group of DNA repair gene pathways. Conclusions: This study demonstrated that MycN and c-Myc tightly cooperate in regulation of the neuroblastoma CSC phenotypes and radioresistance upon glutamine deprivation. Pharmacologically, strategies targeting glutamine metabolism may prove beneficial in Myc-driven tumors. Consideration of MycN/c-Myc status in selecting neuroblastoma patients for glutamine metabolism treatment will be important to avoid potential radioresistance.


Glutamine/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , DNA Repair , Gene Expression Regulation, Neoplastic , Genes, myc , Humans , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/therapy , Radiotherapy/methods
...